
 107

Efficient Animation of Water Flow on Irregular Terrains

Marcelo M. Maes*
Iwate University, Japan

Tadahiro Fujimoto†
Iwate University, Japan

Norishige Chiba‡
Iwate University, Japan

Figure 1. Water flowing on irregular terrain.

Abstract

We present an optimization of the water column-based height-
field approach of water simulation by reducing memory footprint
and promoting parallel implementation. The simulation still
provides three-dimensional fluid animation suitable for water
flowing on irregular terrains, intended for interactive applications.
Our approach avoids the creation and storage of redundant virtual
pipes between columns of water, and removes output dependency
for the parallel implementation. We show a GPU implementation
of the proposed method that runs at near interactive frame rates
with rich lighting effects on the water surface, making it efficient
for water animation on natural terrains for Computer Graphics.

Keywords: Natural phenomena, physically based animation,
water simulation, height field.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation.

1 Introduction

Water representation and animation have been thoroughly
investigated in Computer Graphics due to the complexity of the
phenomenon and its visualization. Although recent research
focuses on efficient methods to solve the computational expensive
water simulation, these methods still require minutes of

calculation time for every frame. Interactive applications such as
landscape design, virtual reality, and games, which often need
three-dimensional water animation at interactive rates, either lack
realistic solutions or they have to rely on a two-dimensional
plane-based simplification of the water surface.

Due to the complexity of the water behavior, there is no single
method that can capture all the subtle effects of water [Iglesias
2004]. Therefore several methods must be combined to produce
realistic animations. Preferably, these methods should be based on
physics to behave as its physical counterpart. However, Computer
Graphics applications don’t need the same degree of accuracy as
engineering applications, usually sacrificing accuracy for
efficiency.

Water flowing on terrains generates several natural phenomena,
including rivers, waterfalls, puddles, and lakes. This flow is
mainly dominated by gravity and the water is near vertical
equilibrium against the ground [Irving et al. 2006]. Since terrains
are highly irregular, the water does not lie homogeneously over
the terrain. This requires an efficient simulation method with good
spatial handling, but without loss of visual details. It is also
desirable the visualization to be reasonably simple, making the
method suitable for Computer Graphics animation and interactive
applications.

We present an optimization of the water column-based height-
field approach, previously proposed by [O’Brien and Hodgins
1995; Mould and Yang 1997; Holmberg and Wunsche 2004]. The
general idea of these methods is to calculate the hydrostatic
pressure in columns of water and the flow due to pressure
difference through virtual pipes between adjacent columns. The
water columns have variable height and lie directly on the terrain,
therefore the flow calculations are spatially performed only where
necessary. The method is composed of three interacting systems: a
water volume model, a particle model for splashes and bubbles,
and an external object interaction model. We show in this work an
optimization of the water volume model. This model has several
advantages that our approach benefits as well:
� Hydrostatic physics calculation is has low computational cost;
� The model implicitly generates water surface phenomena, such

as the propagation of waves;
� All variables are physically based, allowing other physical

systems to interact with the water volume model;

*e-mail: marcelo@cg.cis.iwate-u.ac.jp
†e-mail: fujimoto@cis.iwate-u.ac.jp
‡e-mail: nchiba@cis.iwate-u.ac.jp

© ACM, (2006). This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in
GRAPHITE '06: Proceedings of the 4th International
Conference on Computer Graphics and Interactive Techniques
in Australasia and Southeast Asia, (2006).
http://doi.acm.org/10.1145/1174429.1174447

 108

� The three-dimensional simulation has squared computational
cost, proportional to the resolution of the two-dimensional grid;

� The top of all columns are known resulting in a straightforward
water surface geometry extraction as a height field;

� Low computational cost of optical effects on the water surface
inherited from other two-dimensional methods.

There are some limitations as a general solution for fluid
simulation:
� The model suffers from vertical isotropy due the column

representation;
� Breaking waves and free parts, such as splashes, foam, and

bubbles can not be directly represented, requiring an additional
particle system;

� Calculation time step must be small otherwise the system
becomes unstable and oscillates, which vexes most time-
forward integration methods.

Our contributions to the optimization of the water volume model
are:
� Low memory footprint by reducing the number of redundant

virtual pipes between columns of water, without affecting the
results of the physical simulation;

� Parallel promotion of the algorithm by removing output
dependency on the shared data;

� Implementation of both the simulation and rendering processes
on commodity graphics hardware, thus reducing data transfer
for every frame;

� Data structure packing in two-dimensional textures for graphics
hardware storage;

� A single height field to represent both terrain and water surface,
reducing the geometry rendered per frame;

� Accurate rendering of refraction, light transmittance and
attenuation, taking into account the water depth.

In Section 2 we describe related work in fluid simulation for
Computer Graphics. In Section 3, we show in detail the proposed
model, and in Section 4, the parallel implementation. In Section
5, we present the results by showing several examples. In Section
6 we discuss the advantages, drawbacks and future directions, and
we conclude this work in Section 7.

2 Previous Work

To solve the Navier-Stokes equations (NSE) for fluid dynamics,
computational models require a lot of computer resources in terms
of memory storage and calculation time [Iglesias 2004].
Numerical solutions of the NSE [Anderson 1995] can be
categorized in Eulerian (grid-based) and Lagrangian (particle-
based) approaches. The first subdivides the space in a regular grid
and observes the fluid that passes through it. The second tracks
disjoint elements of fluid through time.

One of the first attempts to carry out a full three-dimensional
NSE-based simulation in Computer Graphics was the work of
[Foster and Metaxas 1996]. They subdivided the three-
dimensional space in a regular grid, and solved the Navier-Stokes
equations by discretizing the pressure and velocities respectively
at the grid’s center and faces. They used marker particles to track
the fluid surface, and alternatively a height field for liquids.

The most important contribution for stability is the work of [Stam
1999]. The method is made unconditionally stable by applying a
semi-Lagrangian method for the advection term of the NSE. A
two-dimensional implementation on the GPU was presented by
[Harris 2004; Wu et al. 2004] and a three-dimensional by [Liu et
al. 2004]. Although these simulations run in real-time, they do not
address the problem of simulating fluids with free boundaries,
such as water.

The free boundary issue is addressed with a hybrid particle and
level set method by [Foster and Fedkiw 2001; Enright et al. 2002;
Losasso et al. 2004; Irving et al. 2006]. An implicit function
evolves together with the fluid simulation to track the isocontour
representing the interface of the liquid. Particles are used around
the interface in the coarse grid of the simulation to accurately
adjust the surface of the liquid.

Eulerian approaches are not spatially efficient in simulating water
flow on terrains. Since terrains may be highly irregular, the grid
structure may waste storage space that never contains liquid; see
Figure 2 (a).

Losasso et al. [2004] proposed the use of adaptive meshes to
alleviate the resolution problem of grid-based methods. They add
finer resolution where visual details are necessary. They apply an
unrestricted octree structure to increase resolution, and present a
new method of discretizing pressure and velocity. Their method
reduces the simulation time for fluid simulation with fine detail,
without increasing accuracy error.

(a)

(b)

(c)

Figure 2. Water flow simulation on terrain (black curve) using
different methods: (a) regular grid subdivision stores cells that
may be always empty throughout the simulation; (b) particles

increase surface details, as well as calculation time; (c) columns
of water with variable height has a good trade-off between

number of stored cells and surface sampling.

Recently, Irving et al. [2006] proposed a hybrid method of two-
dimensional grid composed of tall cells with linear pressure

 109

profile, and a three-dimensional grid near the interface of the
fluid. They use a NSE-based solver over both structures by
interpolating tall cells values accordingly. They apply the
particle/level set method to track the surface of the fluid only in
the three-dimensional region. They state this combination has
performance gains for flows heavily dominated by gravity, like in
shallow water regime. Like other NSE-based solvers, the
calculation time is still in the order of minutes per frame.

Particle-based methods represent water throughout the terrain
only where needed. Even having a better spatial distribution, these
methods usually require smaller time steps to avoid particles
bursting away due to attraction and repulsion forces.

Chiba et al. [1995] proposed a quasi-physical method in which
particle interactions occur within a voxel space to reduce
interactions with distant particles and to perform collisions
against obstacles. To reconstruct the water surface, they use an
implicit function influenced by the particles. They point out that
the number of particles must be high to avoid surface artifacts.

Müller et al. [2001] used Smoothed Particles Hydrodynamics
(SPH) to simulate fluids by interpolating physical quantities, such
as viscosity and pressure, defined at discrete particles. They use
point splatting and marching cubes to render the surface of
liquids. They state that tracking and rendering the fluid surface for
interactive applications remain a challenge.

Kipfer and Westermann [2006] presented a GPU accelerated
particle simulation using the SPH method. They use three sorted
linear lists to lookup for particle collisions and a height field over
the particles to represent the surface of the water. Although this
representation of the surface does not require a dense particle set,
it is not volume conserving. The surface details, such as waves,
depend directly on the height field resolution, which was
apparently small in their examples to keep interactive frame rates.

Premoze et al. [2003] used the Moving-Particle Semi-Implicit
(MPS) method to simulate fluids with a level set method to
reconstruct the surface. They ran a low-resolution simulation for
instant feedback, and then increased the number of particles for
the final simulation. Since the MPS method is fully Lagrangian,
the fluid particles should be present only where they are needed.
However, even a simple polygonal scene must be converted into
the particle representation.

Lagrangian approaches usually require a considerable amount of
particles to represent the details of the fluid surface, thus
increasing storage space and computation time. Additional
particles do not contribute only to the surface representation, they
also increase the overall number of particles in the simulation; see
Figure 2 (b). The surface reconstruction is also complex because
of continuous topology change.

To alleviate the complexity of a three-dimensional simulation of
water flow on terrains, some works [Neyret and Praizelin 2001;
Thon and Ghazanfarpour 2001; Thon and Ghazanfarpour 2002;
Rochet 2005] focus only on what is seen in brooks and rivers, i.e.,
waves and ripples on the water surface near the vicinity of
obstacles and banks. The water surface is assumed to be two-
dimensional and discretized in a regular grid to run the fluid
simulation. Based on the resulting velocity field, ripples and
shock waves are extracted; then bump maps are placed and
animated on the surface.

Although these methods realistically include phenomena not
present in low-resolution three-dimensional simulations, they
cannot represent water flowing on irregular terrains and other
three-dimensional effects such as splashes and falls.

3 Physical Simulation

Kass and Miller [1990] first proposed to perform water simulation
with the assumptions of the water surface being a height field and
the horizontal velocity constant through a vertical column of
water. Their model uses a simplified subset of the fluid dynamics
in two-dimensions. However they do not model the interaction of
external objects and free parts such as splashes.

Our physical model is based on the work introduced by O’Brien
and Hodgins [1995]. The model is composed of a volume of
water which is divided into vertical columns in a rectilinear grid.
Each of these columns is connected to its neighbors by virtual
pipes. The flow in the pipes is derived from the physical laws of
hydrostatic pressure. The model also supports external forces on
the surface that are applied as external pressure. Spray particles
are created when the upward velocity of a portion of the surface
exceeds a certain threshold.

Mould and Yang [1997] extended this model by running the
simulation on an arbitrary height field and by reducing the vertical
isotropy through the division of each column into multiple cells;
see Figure 3. They also extended the particle model by including
bubbles rising inside the water. Later, Holmberg and Wunsche
[2004] applied this model to simulate the natural movement of
rivers, rapids and waterfalls.

(a) (b)

Figure 3. Columns of water with two cells each. (a) Virtual pipes
are created between overlapping cells of adjacent columns and the

air above the adjacent column. (b) Flow occurs due pressure
difference between adjacent columns.

This model has the same advantage of Lagrangian models: since
each column lies directly on the terrain, the calculation is spatially
performed only where needed; see Figure 2 (c). The height of the
columns is variable, and the surface sampling is directly related to
the discretization of the rectilinear grid over the height field.
Therefore, the water surface can also be represented as a height
field over the terrain.

In the next sub-sections we show how to optimize the core of the
water volume simulation, followed by its parallel implementation
on the GPU.

p1

p0+pe

p0+p’e

p2

p3

p’1

p’2

p’3

η1

η2

η3

 110

3.1 Water Volume Model

Here we review the model used in the simulation and the related
equations. All vertical columns start with a pre-defined height that
can be input by the user, and which varies over time during the
simulation. Source and sink columns retain their height to allow
in- and out-flows to the system. Virtual pipes are created
horizontally between adjacent columns where their cells overlap;
see Figure 3 (a). No pipe is created vertically between stacked
cells in the same column. Their height varies due to the flow
through pipes between neighboring columns.

The flow in these virtual pipes is determined by the physics of
hydrostatics. The pressure at one point of the column is given by

 eppghp ++= 0ρ (1)

where h is the height of water above the calculated point; ρ is the
density of the fluid; g is the gravity acceleration; p0 is the
atmospheric pressure; and pe is the pressure due to external forces.

The flow velocity due to the pressure difference between two
points in adjacent cells is given by

()

l

pp
tf tailhead

ρ
ηη

−
∆+= 0 (2)

where f is a non-physical frictional coefficient, as suggested in
[Mould and Yang 1997] to produce a gradual loss of energy; η0 is
the flow velocity in the previous time step; ∆t is the simulation
time step; and l is the length of the pipe. Given the flow in the
pipe, the volume of water that should be moved through it is

 ctV η∆= (3)

where c is the cross sectional area of the pipe, i.e. the amount of
overlap between the cells. The volume transferred is translated
into height changes between the cells. Since mass must be
conserved, all pipes that are removing fluid from a cell are scaled
back if the volume of that cell becomes negative. When the height
of a cell reaches a threshold, the cell is considered dry and does
not transfer fluid out to its neighbors.

Since the flow velocity depends on the previous time step, it must
be stored in memory for each virtual pipe. As the height of the
columns changes throughout the simulation, virtual pipes must be
created and deleted as the overlap between adjacent cells changes.

Here we note that the pressure difference between any two
submerged points is the same for two adjacent columns; for
example (p1−p’1) = (p2−p’2) = (p3−p’3) in Figure 3 (b). The
resulting flow in each pipe, Equation (2), will be the same. The
volume of water transferred in each pipe differs and depends on
the amount of overlap between the adjacent cells. Therefore, to
reduce memory storage, we calculate and store the flow of just
one pair of those points. Consequently, to calculate the transferred
volume of water, we must check if two cells overlap or not for
every simulation step. This process does not affect the overall
performance since the same process must also be performed in the
original algorithm to check whether a pipe must be created or
deleted. Thus we reduce the maximum memory requirements per
adjacent columns from 2× the number of stacked cells, see Figure

3 (a), to only 2 (the pipe between adjacent columns and the pipe
connected to the air) independent of the number of stacked cells.

To model water that breaks free from the water volume, such as
splashes and waterfalls, [Holmberg and Wunsche 2004] calculates
the volume of water that flows though a weir. In their work, this
model is only used when the height of a wave crest becomes
unstable, or when the wave height is 0.78 of the water depth. The
flow rate through a weir is given by

 gbhflowrate 2
3

2 2

3

= (4)

where b is the width of the column; and h the height of the
unobstructed water. The volume of water transferred is

 tflowrateV ∆×= (5)

The assumption of flow through a weir is a good approximation
since the flow direction is discretized to one of the neighbors, and
the flow will occur only in the unobstructed directions.

We note that Equation 4 does not depend on the flow rate from
the previous step, and we adopt this model for all the flow
between a column of water and the adjacent air above a lower
column. Besides reducing the maximum number of stored virtual
pipes between adjacent columns to 1, we have a single model for
unobstructed water flow when coupled with a particle system. The
simulation results show no change in the behavior of the water
surface, such as the wave propagation phenomenon.

3.2 Parallel Implementation

Our goal is to bring water flow over terrains at interactive frame
rates to Computer Graphics applications. One way of improving
the speed of the simulation is to run it in parallel in dedicated
processor or distributed architecture. Recently commodity
graphics hardware has become inexpensive, programmable, and
has been used as a general purpose processing unit [GPGPU]. The
processor is capable of running vertex and fragment programs in
parallel on multiple dedicated processors.

To avoid communication between parallel processes and random
access in the output shared memory storage, which are both not
available in programmable graphics hardware; we have to gather
all water inflow to the water column being processed and subtract
the outflow from itself. To maintain consistency of calculation,
we have implemented a single function that calculates the outflow
of water in a single column to all neighboring columns. That way
it is possible to scale down the outflow in case the volume
becomes negative, thus conserving mass in the system.

Following the common procedure for general-purpose
computation on GPUs [GPGPU], we store the data structures in
two two-dimensional textures, one for the column height and the
other for the flow velocity, as shown in Figure 4. Fragment
programs are then used to update the stored values using one-to-
one pixel-to-texel mapping.

The input terrain is given by a height-map and the height is stored
in a floating-point texture. The grid for the columns of water is

 111

created with the same resolution as the terrain height-map. To
reduce the access to texture memory, we pack the terrain and the
water columns in a single RGBA texture, where the red
component has the terrain height, and the other three components
can store up to three cells of a single column; see Figure 4 (a).

The flow velocity between two adjacent columns is the same for
any pair of points at the same height, regardless of how many
cells a column has. Hence we only need to store one flow velocity
value per one pair of adjacent columns, rather than allocating and
maintaining all virtual pipes between the fluid cells. See Figure 4
(b) for the texture arrangement of pipes and flow direction
between 8-neighboring columns. The flow rate through a weir is
not stored since it does not depend on values calculated in
previous time steps.

With the texture arrangement explained above, we minimize the
memory storage necessary for the simulation. The volume of
water transferred between cells is computed in a second rendering
pass, based on the flow velocity calculated in a first pass.

Because the textures’ format and size are the same for both the
height and flow values, we swap them with a third texture that
serves as a frame buffer. Thus we avoid copying the results to
different memory places. The pseudo-code below shows the
initialization of the GPU using the OpenGL extensions:
Framebuffer Object, Float Texture, and Shader Objects.

Generate and bind framebuffer object

Generate and bind three RGBA two-dimensional floating-point
textures, with filtering to nearest, and wrapping to clamp.

Associate each texture with one of the framebuffer object’s
color attachments.

Associate each color attachment with flow_velocity, height, and
buffer aliases.

Draw into buffer with alias height.

Load fragment shader to scale values of the height map to the
physical heights for the simulation.

Render a quad to write the terrain height values and initial
water cells heights.

The next pseudo-code shows a simulation step with the same
OpenGL extensions and nomenclature as above.

Draw into buffer with alias buffer.

Bind texture with alias flow_velocity to read previous time step
values.

Use fragment shader to calculate the pressure (Equation 1) and
the flow velocity (Equation 2) between adjacent columns.

Render a quad to update the flow velocity values.

Swap buffer and flow_velocity aliases.

Draw into buffer with alias buffer.

Bind texture with aliases flow_velocity and height.

Use fragment shader to check in- and out-flows between
overlapping cells by accessing the flow velocity texture, and to
calculate the flow rate through a weir (Equation 4).

Render a quad to update height values obtained from the
transferred volume of water (Equations 3 and 5).

Swap buffer and height aliases.

After the simulation step, the texture name associated with the
color attachment with alias height has the terrain and water
column heights needed for rendering.

In our implementation we calculate the outflow of the cell and its
neighbors on the fly instead of storing the value in an additional
lookup texture.

(a) (b)

Figure 4. Stored textures: (a) height of terrain packed with height
of fluid cells of one column; (b) flow through pipes between
adjacent columns and the flow direction convention (arrows).

Figure 5. Lighting on the water surface: reflection ray is mapped
to an environment cube map; refraction ray intersects the terrain
through a linear search with fixed increments δ (hollow circles),

followed by a binary search on the last δ (diamonds).

3.3 Particle System

We implement a simple particle system to interact with the water
volume model. The particles are used to represent free parts of
fluid, such as splashes. One of the most useful definitions of
breaking waves [Schlicke 2001] is that breaking occurs when the
wave slope exceeds a critical value. Instead of fixing the critical
value, we let the user specify the slope threshold to control the
particle creation.

We use one extra texture to write the initial velocity and the
volume of the free part. This texture must be transferred from the
GPU to the CPU to allocate new particles. Two other textures
keep the position and the velocity of every generated particle. The
resolution of these two textures will limit the number of particles
running in the system.

We do not consider inter-particles interaction; they are only

refraction

N

cube map

δ/2

δ

water
surface

ground
surface

δ/4

reflection
E

terrain
height

water
cells

height

R

G

B

A

height texel

s

t

flow velocity(s,t)

A

G B R

 112

influenced by gravity. The velocity and positions are updated by
running fragment shaders on the GPU. When a particle collides
with the main body of water, it generates pressure on the surface,
derived from a friction force and a buoyant force [Mould and
Yang 1997]. This external pressure and the volume of the particle
are written in texture memory, and used by the water volume
model simulation. Finally, the volume of collided particle is
absorbed back in the main water volume.

Our implementation checks if new particles must be created at
every simulation step. A more efficient way is to accumulate the
volume of free parts and generate them after an amount of frames.

4 Rendering

We render the terrain and the water surface as height fields. Since
the terrain height and the water cells height are packed together in
a single texture, we can render both surfaces with just one height
field and interpolate from one material to the other with a
fragment shader in the GPU. This also reduces the number of
texture access, consequently reducing the rendering speed.

We use a vertex shader program to displace the height of a grid
mesh, and to calculate the normals based on the heights available
from the texture. Since all data necessary for this process is
already available on the GPU, there is no additional data transfer
to and from the GPU for the calculations.

A fragment shader can be used to perform per-pixel calculations
for lighting, reflection and refraction of the water surface. The
reflection and refraction are calculated based on the eye direction
(E) and the surface normal (N); see Figure 5. The reflected ray is
mapped to a cube map, assuming that the environment is far away
from the surface.

Instead of mapping the refraction to a cube map or assuming that
the underlying ground is flat at a certain distance from the surface,
we accurately compute the intersection of the refracted ray and the
terrain ground through a linear search with fixed increments,
followed by a binary search [Policarpo et al. 2005]. Refer to
Figure 5 for a schematic diagram of the process.

Although the refraction could be calculated per-pixel, it would
require a depth search and float-point texture interpolation per-
pixel. In order to maintain interactive frame rates, we perform the
refraction calculation in the vertex shader. The length of the
refracted ray (from the vertex to the ground) and the texture
coordinates (at the intersection with the ground) are interpolated
on the GPU through varying variables, which are then available in
the fragment shader.

The attenuation of light in transparent volumes does not only
decrease the color intensity, but also deepens the color saturation
and changes the hue [Sun et al. 1999]. The internal transmittance
for liquid solutions is given by the Beer’s law

 () ()cla
iernal

iT
λλ −= 10int (6)

where λi is the wavelength for sample i; a(λi) is the absorption
spectrum of the material; c is the solution concentration; and l is
the length of the light path. We sample the absorption spectrum of

water for the RGB wavelengths. This approach may introduce
significant errors due to sub-sampling of the spectrum [Sun et al.
1999]; however it is an acceptable approximation in our case.

The Fresnel term defines the ratio of reflection and refraction of
non-polarized light from a dielectric material. We use the Fresnel
approximation proposed in [Loviscach 2003], given by

 ()EN −⋅−= 5.20.1clampFresnel (7)

where clamp restricts the values to [0, 1]; N is the surface normal;
and E is the eye direction.

We render the particles as shaded translucent spheres and blend
them with the current rendered frame. At this time, no sorting is
done when rendering the particles.

5 Results

All the experiments shown here ran on an Intel Pentium 4 at
3.4GHz processor and 1GB of memory, and an NVIDIA GeForce
6600GT graphics card with 128MB of memory. OpenGL and
OpenGL Shading Language were used for all graphics operations.
The time step of the simulation was set to 0.005s, which would
require 200 frames per second animation for a real-time
simulation. The viewport resolution was set to 640x480 pixels.

(a) (b)

Figure 6. Appearance comparison with different number of cells
per column: (a) one cell per column; (b) three cells per column.

We first ran a simulation with different column subdivisions of
one, two and three cells per column. The results are shown in
Figure 6. There is no visual difference on the surface of water, but
the performance decreased as the number of cells increased. The
performance drop for two and three cells per columns was
respectively around 60% and 80%. The number of cells per
column must be carefully chosen since it has a significant impact
in the simulation performance. More cells per column must be
used when the application requires more samples of the velocity,
derived from height changes, in the vertical direction to interact
with objects inside the fluid.

We tested whether the column subdivision still reduced the
vertical velocity isotropy or not. We ran a simulation with two
cells per column and calculated the root mean square error
between the vertical velocity of the bottom cell and the
interpolated vertical velocity of the water surface at the same
height as the bottom cell. The graph in Figure 7 shows the
average vertical velocity at the water surface, the calculated error,
and the percentage the error represents relative to the average
velocity at the surface. We can see from Figure 7 that the error,
after 200 frames of simulation, is steady around 20%. This error is

 113

large if the application requires the interaction with the internal
velocities in the fluid. In this case, the column subdivision
becomes necessary to reduce the vertical isotropy. For
applications requiring only the visual representation of the water
surface, the number of cells per column becomes irrelevant.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 200 400 600 800 1000
frame

v
e
rt

ic
a
l
v
e
lo

c
it

y
 (

m
/s

)

Average

RMSE

RMSE/Average

Figure 7. Root Mean Square Error (RMSE) between the
vertical velocity at the bottom cell and the interpolated vertical
surface velocity at the same height throughout 1000 frames of
simulation.

In the next experiment, we verified the speed increase by running
the simulation on the GPU. The proposed model allows any
number of cells of water in a single column, though we
implemented only one cell for the GPU so far. The simulations
were rendered using the fixed functionality of the graphics
pipeline for comparison purposes. Table 1 shows the results for
different terrains. We also ran the simulation for the same terrains
rendered with full lighting effects. Table 1 shows the performance
of both simulation and rendering time combined. Figure 1 and 8
show selected frames from these animations.

Terrain
Map

Resolution
(pixels)

FPS
CPU

FPS
GPU

Speed-
up

FPS GPU
+ FX

Puddle 64 x 64 8.75 147 17x 127

Fractal 128 x 128 2.34 33.2 14x 31

River 256 x 256 0.53 8.29 16x 7.82

Lake 512 x 512 0.12 2.09 17x 1.16

Table 1. Comparison of performance (shown in Frame Per
Seconds) for different terrains: on CPU (FPS CPU); on GPU

rendered with fixed functionality (FPS GPU); and on GPU with
full lighting effects (FPS GPU + FX).

In the next example we show different internal transmittance
values for water. We used a height map consisted of two planes
forming a slope shown in Figure 8 (a). The maximum depth is
15.5m, and in the shallowest part the water has depth of 0.5m.
Figure 8 (b) shows the internal transmittance of pure water and
chlorophyll concentration of 70, by just sampling the
transmittance graph for chlorophyll-rich green oceanic waters
[Morel and Prieur 1977].

We ran a simulation of a fountain with free parts. The source of
the water is located at the top of the fountain. Two sharp steps
make the water break into small waterfalls. Figure 9 shows the
results of the simulation for a maximum of 65536 particles, using
two 256×256 textures. The simulation runs at approximately 2
frames/seconds, with possible further optimizations to increase
the frame rate.

(a)

(b)

 Figure 8. (a) Height map for a two-plane slope; (b) light
attenuation and internal transmittance for pure water and

chlorophyll-rich water.

6 Discussion

The results of the experiments showed that there is an average
increase of a factor of 16 in speed when running the simulation on
the graphics hardware. The combination of the simulation data in
the rendering pipeline and the height field representation of
surfaces resulted in near real-time animations of water flowing on
terrains for the smaller terrain maps. The compact representation
of the simulation data, i.e., two RGBA textures of same resolution
for a given terrain, makes the water column-based simulation an
attractive option for interactive applications.

The obvious drawback of the water column-based model is the
vertical isotropy. External forces on the water surface are
unconditionally applied in the vertical direction, and certain water
phenomena cannot be represented within this model, such as
vortices. Another drawback is that this model suffers from
instability over large time steps, which can cause undesired
oscillations on the water surface.

Some visual artifacts appear on the interpolated ground texture
due to the height map resolution and the calculation of the
refraction in the vertex shader; see Figure 9 (b). The height map
resolution can be used as trade-off between interactively
previewing the animation and a final high-quality rendering.

Without a particle model, the volume of water transferred through
the weir flow is immediately deposited in the neighboring cell.
This results in an unnatural rise of the column height, as discussed
in [Holmberg and Wunsche 2004]. The particle system requires
additional computational time, affecting the overall performance.
The main drawback is the cost of the data transfer from the GPU
to the CPU, since the CPU must allocate memory for the particles.

On the rendering side, the terrain ground could have better
lighting, including self-shadowing [Policarpo et al. 2005] and
other underwater phenomena [Loviscach 2003; Iwasaki et al.
2003] such as caustics. The particle rendering needs a substantial
improvement, such as in [Takahashi et al. 2003].

 114

7 Conclusion

We have proposed an optimization of the height-field based water
volume model for efficient three-dimensional water flow
simulation on terrains. We showed that the model has the
advantage of low memory consumption. Running the simulation
in parallel on graphics hardware also aids with realistic rendering
of water surfaces with considerably less data transfer per frame.
The irregular terrain ground under the water can also be
accurately rendered without simplifications.

The results of simulations running on the GPU of different
terrains showed a considerable increase in speed with near
interactive frame rates. In addition, the compact memory storage
makes the proposed method an attractive approach for water flow
on natural scenery for Computer Graphics animation.

Acknowledgements

This work was partially supported by the Japanese Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for
Exploratory Research 17650021.

References

ANDERSON, J. D. 1995. Computational Fluid Dynamics: The
Basics with Applications, McGraw-Hill.

CHIBA, N., SANAKANISHI, S., YOKOYAMA, K., OOTAWARA, I.,
MURAOKA, K., AND SAITO, N. 1995. Visual Simulation of Water
Currents Using a Particle-based Behavioural Model, The

Journal of Visualization and Computer Animation, 6, 3, 155-
171.

ENRIGHT, D., MARSCHNER, S., FEDKIW, AND R. 2002. Animation
and Rendering of Complex Water Surfaces, ACM Transactions

on Graphics, 21, 3, 736-744.

FOSTER, N., AND FEDKIW, R. 2001. Practical Animation of
Liquids, In Proceedings of ACM SIGGRAPH 2001, 23-30.

FOSTER, N., AND METAXAS, D. 1996. Realistic Animation of
Liquids, Graphical Models and Image Processing, 58, 5, 471-
483.

GPGPU. http://www.gpgpu.org/

HARRIS, M. 2004, Fast Fluid Simulation on the GPU, GPU Gems:

Programming Techniques, Tips, and Tricks for Real-Time

Graphics. Addison-Wesley Professional.

HOLMBERG, N., AND WUENSCHE, B. 2004. Efficient Modeling and
Rendering of Turbulent Water over Natural Terrain. In
Proceedings of GRAPHITE 2004, 16-18.

IGLESIAS, A. 2004. Computer graphics for water modeling and
rendering: a survey, Future Generation Computer Systems, 20,
8, 1355-1374.

IRVING, G., GUENDELMAN, E., LOSASSO, F., AND FEDKIW, R. 2006.
Efficient Simulation of Large Bodies of Water by Coupling
Two and Three Dimensional Techniques. ACM Transactions
on Graphics, 25, 3, in press.

IWASAKI, K., DOBASHI, Y., AND NISHITA, T. 2003. A Fast
Rendering Method for Refractive and Reflective Caustics Due
to Water Surfaces, Computer Graphics Forum, 22, 3, 601-609.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics for
computer graphics. In Proceedings of ACM SIGGRAPH 1990,
49-57.

KIPFER, P., AND WESTERMANN, R. 2006. Realistic and Interactive
Simulation of Rivers. In Proceedings of Graphics Interface,
41-48.

LIU, Y., LIU, X., AND WU, E. 2004. Real-Time three-dimensional
Fluid Simulation on GPU with Complex Obstacles, In
Proceedings of Pacific Conference on Computer Graphics and

Applications, 247-256.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water
and smoke with an octree data structure, ACM Transactions on

Graphics, 23, 3, 457-462.

LOVISCACH, J. 2003. Complex Water Effects at Interactive Frame
Rates. WSCG International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision, 11, 1,
298-305.

MOREL, A., AND PRIEUR, L. 1977. Analysis of variations in ocean
color, Limnology and Oceanography, 22, 709-722.

MOULD, D., AND YANG, Y. H. 1997. Modeling Water for
Computer Graphics, Computers & Graphics, 21, 6, 801-814.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-Based
Fluid Simulation for Interactive Applications, In Proceedings

of ACM SIGGRAPH / Eurographics Symposium on Computer

Animation, 154-159.

NEYRET, F., AND PRAIZELIN, N. 2001. Phenomenological
Simulation of Brooks, In Proceedings of Eurographics

Workshop on Animation and Simulation, 53-64.

O’BRIEN, J.F., AND HODGINS, J. K. 1995. Dynamic Simulation of
Splashing Fluids, In Proceedings of Computer Animation, 198-
205, 220.

POLICARPO, F., OLIVEIRA, M. M., AND COMBA, J. L. D. 2005. Real-
Time Relief Mapping on Arbitrary Polygonal Surfaces,
Symposium on Interactive three-dimensional Graphics and
Games, pp. 155-162.

PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND

WHITAKER, R. T. 2003. Particle-Based Simulation of Fluids,
Computer Graphics Forum, 22, 3, 401-410.

ROCHET, F. 2005. Simulation Réaliste de Ruisseaux en Temps

Réel, Masters thesis, Université Joseph Fourier, France.

SCHLICKE , T. 2001 Breaking Waves and the Dispersion of

 115

Surface Films. PhD thesis, University of Edinburgh.

STAM, J. 1999. Stable Fluids, In Proceedings of ACM SIGGRAPH

1999, 121-128.

SUN, Y., FRACCHIA, F. D., AND DREW, M. S. 1999. Rendering the
Phenomena of Volume Absorption in Homogeneous
Transparent Materials, In Proceedings of IASTED International

Conference on Computer Graphics and Imaging, 283-288.

TAKAHASHI, T., FUJII, H., KUNIMATSU, A., HIWADA, K., SAITO, T.,
TANAKA, K., AND UEKI, H. 2003. Realistic Animation of Fluid
with Splash and Foam, Computer Graphics Forum, 22, 3, 391-
400.

THON, S., AND GHAZANFARPOUR, D. 2001. A Semi-Physical Model
of Running Water, In Eurographics UK 2001 Conference

Proceedings, 53-59.

THON, S., AND GHAZANFARPOUR, D. 2002. Real-Time Animation
of Running Waters Based on Spectral Analysis of Navier-
Stokes Equations, Computer Graphics International, 333-346.

WU, E., LIU, Y., AND LIU, X., 2004. An Improved Study of Real-
Time Fluid Simulation on GPU, Journal of Computer

Animation and Virtual World, 15, 3-4, 139-146.

(a)

(b)

(c)

 (d) (e)

Figure 9. Animation frames for different terrains: (a) water collapsing in a puddle 1.5m×1.5m×0.15m; (b) fractal terrain flooding
12m×12m×2m (generated with Perlin noise); (c) river flow 50m×50m×10m; (d) lake sunset 200m×200m×50m; (e) fountain 20m×20m×5m.

