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Figure 1. Water flowing on irregular terrain. 

 

Abstract 

We present an optimization of the water column-based height-
field approach of water simulation by reducing memory footprint 
and promoting parallel implementation. The simulation still 
provides three-dimensional fluid animation suitable for water 
flowing on irregular terrains, intended for interactive applications. 
Our approach avoids the creation and storage of redundant virtual 
pipes between columns of water, and removes output dependency 
for the parallel implementation. We show a GPU implementation 
of the proposed method that runs at near interactive frame rates 
with rich lighting effects on the water surface, making it efficient 
for water animation on natural terrains for Computer Graphics. 

Keywords: Natural phenomena, physically based animation, 
water simulation, height field. 

CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling—Physically based modeling; 
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of 
Simulation—Animation. 

1 Introduction 

Water representation and animation have been thoroughly 
investigated in Computer Graphics due to the complexity of the 
phenomenon and its visualization. Although recent research 
focuses on efficient methods to solve the computational expensive 
water simulation, these methods still require minutes of 

calculation time for every frame. Interactive applications such as 
landscape design, virtual reality, and games, which often need 
three-dimensional water animation at interactive rates, either lack 
realistic solutions or they have to rely on a two-dimensional 
plane-based simplification of the water surface. 

Due to the complexity of the water behavior, there is no single 
method that can capture all the subtle effects of water [Iglesias 
2004]. Therefore several methods must be combined to produce 
realistic animations. Preferably, these methods should be based on 
physics to behave as its physical counterpart. However, Computer 
Graphics applications don’t need the same degree of accuracy as 
engineering applications, usually sacrificing accuracy for 
efficiency. 

Water flowing on terrains generates several natural phenomena, 
including rivers, waterfalls, puddles, and lakes. This flow is 
mainly dominated by gravity and the water is near vertical 
equilibrium against the ground [Irving et al. 2006]. Since terrains 
are highly irregular, the water does not lie homogeneously over 
the terrain. This requires an efficient simulation method with good 
spatial handling, but without loss of visual details. It is also 
desirable the visualization to be reasonably simple, making the 
method suitable for Computer Graphics animation and interactive 
applications. 

We present an optimization of the water column-based height-
field approach, previously proposed by [O’Brien and Hodgins 
1995; Mould and Yang 1997; Holmberg and Wunsche 2004]. The 
general idea of these methods is to calculate the hydrostatic 
pressure in columns of water and the flow due to pressure 
difference through virtual pipes between adjacent columns. The 
water columns have variable height and lie directly on the terrain, 
therefore the flow calculations are spatially performed only where 
necessary. The method is composed of three interacting systems: a 
water volume model, a particle model for splashes and bubbles, 
and an external object interaction model. We show in this work an 
optimization of the water volume model. This model has several 
advantages that our approach benefits as well: 
� Hydrostatic physics calculation is has low computational cost; 
� The model implicitly generates water surface phenomena, such 

as the propagation of waves; 
� All variables are physically based, allowing other physical 

systems to interact with the water volume model; 
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� The three-dimensional simulation has squared computational 
cost, proportional to the resolution of the two-dimensional grid; 

� The top of all columns are known resulting in a straightforward 
water surface geometry extraction as a height field; 

� Low computational cost of optical effects on the water surface 
inherited from other two-dimensional methods. 

There are some limitations as a general solution for fluid 
simulation: 
� The model suffers from vertical isotropy due the column 

representation; 
� Breaking waves and free parts, such as splashes, foam, and 

bubbles can not be directly represented, requiring an additional 
particle system; 

� Calculation time step must be small otherwise the system 
becomes unstable and oscillates, which vexes most time-
forward integration methods. 

Our contributions to the optimization of the water volume model 
are: 
� Low memory footprint by reducing the number of redundant 

virtual pipes between columns of water, without affecting the 
results of the physical simulation; 

� Parallel promotion of the algorithm by removing output 
dependency on the shared data; 

� Implementation of both the simulation and rendering processes 
on commodity graphics hardware, thus reducing data transfer 
for every frame; 

� Data structure packing in two-dimensional textures for graphics 
hardware storage; 

� A single height field to represent both terrain and water surface, 
reducing the geometry rendered per frame; 

� Accurate rendering of refraction, light transmittance and 
attenuation, taking into account the water depth. 

In Section 2 we describe related work in fluid simulation for 
Computer Graphics. In Section 3, we show in detail the proposed 
model, and in Section 4, the parallel implementation. In Section 
5, we present the results by showing several examples. In Section 
6 we discuss the advantages, drawbacks and future directions, and 
we conclude this work in Section 7. 

2 Previous Work 

To solve the Navier-Stokes equations (NSE) for fluid dynamics, 
computational models require a lot of computer resources in terms 
of memory storage and calculation time [Iglesias 2004]. 
Numerical solutions of the NSE [Anderson 1995] can be 
categorized in Eulerian (grid-based) and Lagrangian (particle-
based) approaches. The first subdivides the space in a regular grid 
and observes the fluid that passes through it. The second tracks 
disjoint elements of fluid through time. 

One of the first attempts to carry out a full three-dimensional 
NSE-based simulation in Computer Graphics was the work of 
[Foster and Metaxas 1996]. They subdivided the three-
dimensional space in a regular grid, and solved the Navier-Stokes 
equations by discretizing the pressure and velocities respectively 
at the grid’s center and faces. They used marker particles to track 
the fluid surface, and alternatively a height field for liquids. 

The most important contribution for stability is the work of [Stam 
1999]. The method is made unconditionally stable by applying a 
semi-Lagrangian method for the advection term of the NSE. A 
two-dimensional implementation on the GPU was presented by 
[Harris 2004; Wu et al. 2004] and a three-dimensional by [Liu et 
al. 2004]. Although these simulations run in real-time, they do not 
address the problem of simulating fluids with free boundaries, 
such as water. 

The free boundary issue is addressed with a hybrid particle and 
level set method by [Foster and Fedkiw 2001; Enright et al. 2002; 
Losasso et al. 2004; Irving et al. 2006]. An implicit function 
evolves together with the fluid simulation to track the isocontour 
representing the interface of the liquid. Particles are used around 
the interface in the coarse grid of the simulation to accurately 
adjust the surface of the liquid. 

Eulerian approaches are not spatially efficient in simulating water 
flow on terrains. Since terrains may be highly irregular, the grid 
structure may waste storage space that never contains liquid; see 
Figure 2 (a). 

Losasso et al. [2004] proposed the use of adaptive meshes to 
alleviate the resolution problem of grid-based methods. They add 
finer resolution where visual details are necessary. They apply an 
unrestricted octree structure to increase resolution, and present a 
new method of discretizing pressure and velocity. Their method 
reduces the simulation time for fluid simulation with fine detail, 
without increasing accuracy error. 

 
(a) 

  
(b) 

 
(c) 

Figure 2. Water flow simulation on terrain (black curve) using 
different methods: (a) regular grid subdivision stores cells that 
may be always empty throughout the simulation; (b) particles 

increase surface details, as well as calculation time; (c) columns 
of water with variable height has a good trade-off between 

number of stored cells and surface sampling. 

Recently, Irving et al. [2006] proposed a hybrid method of two-
dimensional grid composed of tall cells with linear pressure 
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profile, and a three-dimensional grid near the interface of the 
fluid. They use a NSE-based solver over both structures by 
interpolating tall cells values accordingly. They apply the 
particle/level set method to track the surface of the fluid only in 
the three-dimensional region. They state this combination has 
performance gains for flows heavily dominated by gravity, like in 
shallow water regime. Like other NSE-based solvers, the 
calculation time is still in the order of minutes per frame. 

Particle-based methods represent water throughout the terrain 
only where needed. Even having a better spatial distribution, these 
methods usually require smaller time steps to avoid particles 
bursting away due to attraction and repulsion forces. 

Chiba et al. [1995] proposed a quasi-physical method in which 
particle interactions occur within a voxel space to reduce 
interactions with distant particles and to perform collisions 
against obstacles. To reconstruct the water surface, they use an 
implicit function influenced by the particles. They point out that 
the number of particles must be high to avoid surface artifacts. 

Müller et al. [2001] used Smoothed Particles Hydrodynamics 
(SPH) to simulate fluids by interpolating physical quantities, such 
as viscosity and pressure, defined at discrete particles. They use 
point splatting and marching cubes to render the surface of 
liquids. They state that tracking and rendering the fluid surface for 
interactive applications remain a challenge. 

Kipfer and Westermann [2006] presented a GPU accelerated 
particle simulation using the SPH method. They use three sorted 
linear lists to lookup for particle collisions and a height field over 
the particles to represent the surface of the water. Although this 
representation of the surface does not require a dense particle set, 
it is not volume conserving. The surface details, such as waves, 
depend directly on the height field resolution, which was 
apparently small in their examples to keep interactive frame rates. 

Premoze et al. [2003] used the Moving-Particle Semi-Implicit 
(MPS) method to simulate fluids with a level set method to 
reconstruct the surface. They ran a low-resolution simulation for 
instant feedback, and then increased the number of particles for 
the final simulation. Since the MPS method is fully Lagrangian, 
the fluid particles should be present only where they are needed. 
However, even a simple polygonal scene must be converted into 
the particle representation. 

Lagrangian approaches usually require a considerable amount of 
particles to represent the details of the fluid surface, thus 
increasing storage space and computation time. Additional 
particles do not contribute only to the surface representation, they 
also increase the overall number of particles in the simulation; see 
Figure 2 (b). The surface reconstruction is also complex because 
of continuous topology change. 

To alleviate the complexity of a three-dimensional simulation of 
water flow on terrains, some works [Neyret and Praizelin 2001; 
Thon and Ghazanfarpour 2001; Thon and Ghazanfarpour 2002; 
Rochet 2005] focus only on what is seen in brooks and rivers, i.e., 
waves and ripples on the water surface near the vicinity of 
obstacles and banks. The water surface is assumed to be two-
dimensional and discretized in a regular grid to run the fluid 
simulation. Based on the resulting velocity field, ripples and 
shock waves are extracted; then bump maps are placed and 
animated on the surface.  

Although these methods realistically include phenomena not 
present in low-resolution three-dimensional simulations, they 
cannot represent water flowing on irregular terrains and other 
three-dimensional effects such as splashes and falls. 

3 Physical Simulation 

Kass and Miller [1990] first proposed to perform water simulation 
with the assumptions of the water surface being a height field and 
the horizontal velocity constant through a vertical column of 
water. Their model uses a simplified subset of the fluid dynamics 
in two-dimensions. However they do not model the interaction of 
external objects and free parts such as splashes. 

Our physical model is based on the work introduced by O’Brien 
and Hodgins [1995]. The model is composed of a volume of 
water which is divided into vertical columns in a rectilinear grid. 
Each of these columns is connected to its neighbors by virtual 
pipes. The flow in the pipes is derived from the physical laws of 
hydrostatic pressure. The model also supports external forces on 
the surface that are applied as external pressure. Spray particles 
are created when the upward velocity of a portion of the surface 
exceeds a certain threshold. 

Mould and Yang [1997] extended this model by running the 
simulation on an arbitrary height field and by reducing the vertical 
isotropy through the division of each column into multiple cells; 
see Figure 3. They also extended the particle model by including 
bubbles rising inside the water. Later, Holmberg and Wunsche 
[2004] applied this model to simulate the natural movement of 
rivers, rapids and waterfalls. 

 
(a)   (b) 

Figure 3. Columns of water with two cells each. (a) Virtual pipes 
are created between overlapping cells of adjacent columns and the 

air above the adjacent column. (b) Flow occurs due pressure 
difference between adjacent columns. 

This model has the same advantage of Lagrangian models: since 
each column lies directly on the terrain, the calculation is spatially 
performed only where needed; see Figure 2 (c). The height of the 
columns is variable, and the surface sampling is directly related to 
the discretization of the rectilinear grid over the height field. 
Therefore, the water surface can also be represented as a height 
field over the terrain. 

In the next sub-sections we show how to optimize the core of the 
water volume simulation, followed by its parallel implementation 
on the GPU. 
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3.1 Water Volume Model 

Here we review the model used in the simulation and the related 
equations. All vertical columns start with a pre-defined height that 
can be input by the user, and which varies over time during the 
simulation. Source and sink columns retain their height to allow 
in- and out-flows to the system. Virtual pipes are created 
horizontally between adjacent columns where their cells overlap; 
see Figure 3 (a). No pipe is created vertically between stacked 
cells in the same column. Their height varies due to the flow 
through pipes between neighboring columns. 

The flow in these virtual pipes is determined by the physics of 
hydrostatics. The pressure at one point of the column is given by 

 eppghp ++= 0ρ  (1) 

where h is the height of water above the calculated point; ρ is the 
density of the fluid; g is the gravity acceleration; p0 is the 
atmospheric pressure; and pe is the pressure due to external forces. 

The flow velocity due to the pressure difference between two 
points in adjacent cells is given by 

 
( )

l

pp
tf tailhead

ρ
ηη

−
∆+= 0  (2) 

where f is a non-physical frictional coefficient, as suggested in 
[Mould and Yang 1997] to produce a gradual loss of energy; η0 is 
the flow velocity in the previous time step; ∆t is the simulation 
time step; and l is the length of the pipe. Given the flow in the 
pipe, the volume of water that should be moved through it is 

 ctV η∆=  (3) 

where c is the cross sectional area of the pipe, i.e. the amount of 
overlap between the cells. The volume transferred is translated 
into height changes between the cells. Since mass must be 
conserved, all pipes that are removing fluid from a cell are scaled 
back if the volume of that cell becomes negative. When the height 
of a cell reaches a threshold, the cell is considered dry and does 
not transfer fluid out to its neighbors. 

Since the flow velocity depends on the previous time step, it must 
be stored in memory for each virtual pipe. As the height of the 
columns changes throughout the simulation, virtual pipes must be 
created and deleted as the overlap between adjacent cells changes.  

Here we note that the pressure difference between any two 
submerged points is the same for two adjacent columns; for 
example (p1−p’1) = (p2−p’2) = (p3−p’3) in Figure 3 (b). The 
resulting flow in each pipe, Equation (2), will be the same. The 
volume of water transferred in each pipe differs and depends on 
the amount of overlap between the adjacent cells. Therefore, to 
reduce memory storage, we calculate and store the flow of just 
one pair of those points. Consequently, to calculate the transferred 
volume of water, we must check if two cells overlap or not for 
every simulation step. This process does not affect the overall 
performance since the same process must also be performed in the 
original algorithm to check whether a pipe must be created or 
deleted. Thus we reduce the maximum memory requirements per 
adjacent columns from 2× the number of stacked cells, see Figure 

3 (a), to only 2 (the pipe between adjacent columns and the pipe 
connected to the air) independent of the number of stacked cells. 

To model water that breaks free from the water volume, such as 
splashes and waterfalls, [Holmberg and Wunsche 2004] calculates 
the volume of water that flows though a weir. In their work, this 
model is only used when the height of a wave crest becomes 
unstable, or when the wave height is 0.78 of the water depth. The 
flow rate through a weir is given by 

 gbhflowrate 2
3

2 2

3

=  (4) 

where b is the width of the column; and h the height of the 
unobstructed water. The volume of water transferred is 

 tflowrateV ∆×=  (5) 

The assumption of flow through a weir is a good approximation 
since the flow direction is discretized to one of the neighbors, and 
the flow will occur only in the unobstructed directions. 

We note that Equation 4 does not depend on the flow rate from 
the previous step, and we adopt this model for all the flow 
between a column of water and the adjacent air above a lower 
column. Besides reducing the maximum number of stored virtual 
pipes between adjacent columns to 1, we have a single model for 
unobstructed water flow when coupled with a particle system. The 
simulation results show no change in the behavior of the water 
surface, such as the wave propagation phenomenon. 

3.2 Parallel Implementation 

Our goal is to bring water flow over terrains at interactive frame 
rates to Computer Graphics applications. One way of improving 
the speed of the simulation is to run it in parallel in dedicated 
processor or distributed architecture. Recently commodity 
graphics hardware has become inexpensive, programmable, and 
has been used as a general purpose processing unit [GPGPU]. The 
processor is capable of running vertex and fragment programs in 
parallel on multiple dedicated processors. 

To avoid communication between parallel processes and random 
access in the output shared memory storage, which are both not 
available in programmable graphics hardware; we have to gather 
all water inflow to the water column being processed and subtract 
the outflow from itself. To maintain consistency of calculation, 
we have implemented a single function that calculates the outflow 
of water in a single column to all neighboring columns. That way 
it is possible to scale down the outflow in case the volume 
becomes negative, thus conserving mass in the system. 

Following the common procedure for general-purpose 
computation on GPUs [GPGPU], we store the data structures in 
two two-dimensional textures, one for the column height and the 
other for the flow velocity, as shown in Figure 4. Fragment 
programs are then used to update the stored values using one-to-
one pixel-to-texel mapping. 

The input terrain is given by a height-map and the height is stored 
in a floating-point texture. The grid for the columns of water is 
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created with the same resolution as the terrain height-map. To 
reduce the access to texture memory, we pack the terrain and the 
water columns in a single RGBA texture, where the red 
component has the terrain height, and the other three components 
can store up to three cells of a single column; see Figure 4 (a). 

The flow velocity between two adjacent columns is the same for 
any pair of points at the same height, regardless of how many 
cells a column has. Hence we only need to store one flow velocity 
value per one pair of adjacent columns, rather than allocating and 
maintaining all virtual pipes between the fluid cells. See Figure 4 
(b) for the texture arrangement of pipes and flow direction 
between 8-neighboring columns. The flow rate through a weir is 
not stored since it does not depend on values calculated in 
previous time steps. 

With the texture arrangement explained above, we minimize the 
memory storage necessary for the simulation. The volume of 
water transferred between cells is computed in a second rendering 
pass, based on the flow velocity calculated in a first pass. 

Because the textures’ format and size are the same for both the 
height and flow values, we swap them with a third texture that 
serves as a frame buffer. Thus we avoid copying the results to 
different memory places. The pseudo-code below shows the 
initialization of the GPU using the OpenGL extensions: 
Framebuffer Object, Float Texture, and Shader Objects. 

Generate and bind framebuffer object 

Generate and bind three RGBA two-dimensional floating-point 
textures, with filtering to nearest, and wrapping to clamp. 

Associate each texture with one of the framebuffer object’s 
color attachments. 

Associate each color attachment with flow_velocity, height, and 
buffer aliases. 

Draw into buffer with alias height. 

Load fragment shader to scale values of the height map to the 
physical heights for the simulation. 

Render a quad to write the terrain height values and initial 
water cells heights. 

The next pseudo-code shows a simulation step with the same 
OpenGL extensions and nomenclature as above. 

Draw into buffer with alias buffer. 

Bind texture with alias flow_velocity to read previous time step 
values. 

Use fragment shader to calculate the pressure (Equation 1) and 
the flow velocity (Equation 2) between adjacent columns. 

Render a quad to update the flow velocity values. 

Swap buffer and flow_velocity aliases. 

Draw into buffer with alias buffer. 

Bind texture with aliases flow_velocity and height. 

Use fragment shader to check in- and out-flows between 
overlapping cells by accessing the flow velocity texture, and to 
calculate the flow rate through a weir (Equation 4). 

Render a quad to update height values obtained from the 
transferred volume of water (Equations 3 and 5). 

Swap buffer and height aliases. 

After the simulation step, the texture name associated with the 
color attachment with alias height has the terrain and water 
column heights needed for rendering. 

In our implementation we calculate the outflow of the cell and its 
neighbors on the fly instead of storing the value in an additional 
lookup texture. 

 
(a)   (b) 

Figure 4. Stored textures: (a) height of terrain packed with height 
of fluid cells of one column; (b) flow through pipes between 
adjacent columns and the flow direction convention (arrows). 

 
Figure 5. Lighting on the water surface: reflection ray is mapped 
to an environment cube map; refraction ray intersects the terrain 
through a linear search with fixed increments δ (hollow circles), 

followed by a binary search on the last δ (diamonds). 

3.3 Particle System 

We implement a simple particle system to interact with the water 
volume model. The particles are used to represent free parts of 
fluid, such as splashes. One of the most useful definitions of 
breaking waves [Schlicke 2001] is that breaking occurs when the 
wave slope exceeds a critical value. Instead of fixing the critical 
value, we let the user specify the slope threshold to control the 
particle creation. 

We use one extra texture to write the initial velocity and the 
volume of the free part. This texture must be transferred from the 
GPU to the CPU to allocate new particles. Two other textures 
keep the position and the velocity of every generated particle. The 
resolution of these two textures will limit the number of particles 
running in the system. 

We do not consider inter-particles interaction; they are only 
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influenced by gravity. The velocity and positions are updated by 
running fragment shaders on the GPU. When a particle collides 
with the main body of water, it generates pressure on the surface, 
derived from a friction force and a buoyant force [Mould and 
Yang 1997]. This external pressure and the volume of the particle 
are written in texture memory, and used by the water volume 
model simulation. Finally, the volume of collided particle is 
absorbed back in the main water volume. 

Our implementation checks if new particles must be created at 
every simulation step. A more efficient way is to accumulate the 
volume of free parts and generate them after an amount of frames. 

4 Rendering 

We render the terrain and the water surface as height fields. Since 
the terrain height and the water cells height are packed together in 
a single texture, we can render both surfaces with just one height 
field and interpolate from one material to the other with a 
fragment shader in the GPU. This also reduces the number of 
texture access, consequently reducing the rendering speed. 

We use a vertex shader program to displace the height of a grid 
mesh, and to calculate the normals based on the heights available 
from the texture. Since all data necessary for this process is 
already available on the GPU, there is no additional data transfer 
to and from the GPU for the calculations. 

A fragment shader can be used to perform per-pixel calculations 
for lighting, reflection and refraction of the water surface. The 
reflection and refraction are calculated based on the eye direction 
(E) and the surface normal (N); see Figure 5. The reflected ray is 
mapped to a cube map, assuming that the environment is far away 
from the surface. 

Instead of mapping the refraction to a cube map or assuming that 
the underlying ground is flat at a certain distance from the surface, 
we accurately compute the intersection of the refracted ray and the 
terrain ground through a linear search with fixed increments, 
followed by a binary search [Policarpo et al. 2005]. Refer to 
Figure 5 for a schematic diagram of the process. 

Although the refraction could be calculated per-pixel, it would 
require a depth search and float-point texture interpolation per-
pixel. In order to maintain interactive frame rates, we perform the 
refraction calculation in the vertex shader. The length of the 
refracted ray (from the vertex to the ground) and the texture 
coordinates (at the intersection with the ground) are interpolated 
on the GPU through varying variables, which are then available in 
the fragment shader.  

The attenuation of light in transparent volumes does not only 
decrease the color intensity, but also deepens the color saturation 
and changes the hue [Sun et al. 1999]. The internal transmittance 
for liquid solutions is given by the Beer’s law 

  ( ) ( )cla
iernal

iT
λλ −= 10int  (6) 

where λi is the wavelength for sample i; a(λi) is the absorption 
spectrum of the material; c is the solution concentration; and l is 
the length of the light path. We sample the absorption spectrum of 

water for the RGB wavelengths. This approach may introduce 
significant errors due to sub-sampling of the spectrum [Sun et al. 
1999]; however it is an acceptable approximation in our case. 

The Fresnel term defines the ratio of reflection and refraction of 
non-polarized light from a dielectric material. We use the Fresnel 
approximation proposed in [Loviscach 2003], given by 

 ( )EN −⋅−= 5.20.1clampFresnel  (7) 

where clamp restricts the values to [0, 1]; N is the surface normal; 
and E is the eye direction. 

We render the particles as shaded translucent spheres and blend 
them with the current rendered frame. At this time, no sorting is 
done when rendering the particles. 

5 Results 

All the experiments shown here ran on an Intel Pentium 4 at 
3.4GHz processor and 1GB of memory, and an NVIDIA GeForce 
6600GT graphics card with 128MB of memory. OpenGL and 
OpenGL Shading Language were used for all graphics operations. 
The time step of the simulation was set to 0.005s, which would 
require 200 frames per second animation for a real-time 
simulation. The viewport resolution was set to 640x480 pixels. 

 

  
(a)   (b) 

Figure 6. Appearance comparison with different number of cells 
per column: (a) one cell per column; (b) three cells per column. 

We first ran a simulation with different column subdivisions of 
one, two and three cells per column. The results are shown in 
Figure 6. There is no visual difference on the surface of water, but 
the performance decreased as the number of cells increased. The 
performance drop for two and three cells per columns was 
respectively around 60% and 80%. The number of cells per 
column must be carefully chosen since it has a significant impact 
in the simulation performance. More cells per column must be 
used when the application requires more samples of the velocity, 
derived from height changes, in the vertical direction to interact 
with objects inside the fluid. 

We tested whether the column subdivision still reduced the 
vertical velocity isotropy or not. We ran a simulation with two 
cells per column and calculated the root mean square error 
between the vertical velocity of the bottom cell and the 
interpolated vertical velocity of the water surface at the same 
height as the bottom cell. The graph in Figure 7 shows the 
average vertical velocity at the water surface, the calculated error, 
and the percentage the error represents relative to the average 
velocity at the surface. We can see from Figure 7 that the error, 
after 200 frames of simulation, is steady around 20%. This error is 
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large if the application requires the interaction with the internal 
velocities in the fluid. In this case, the column subdivision 
becomes necessary to reduce the vertical isotropy. For 
applications requiring only the visual representation of the water 
surface, the number of cells per column becomes irrelevant. 
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Figure 7. Root Mean Square Error (RMSE) between the 
vertical velocity at the bottom cell and the interpolated vertical 
surface velocity at the same height throughout 1000 frames of 
simulation. 

In the next experiment, we verified the speed increase by running 
the simulation on the GPU. The proposed model allows any 
number of cells of water in a single column, though we 
implemented only one cell for the GPU so far. The simulations 
were rendered using the fixed functionality of the graphics 
pipeline for comparison purposes. Table 1 shows the results for 
different terrains. We also ran the simulation for the same terrains 
rendered with full lighting effects. Table 1 shows the performance 
of both simulation and rendering time combined. Figure 1 and 8 
show selected frames from these animations. 

 

Terrain 
Map 

Resolution 
(pixels) 

FPS 
CPU 

FPS 
GPU 

Speed-
up 

FPS GPU 
+ FX 

Puddle 64 x 64 8.75 147 17x 127 

Fractal 128 x 128 2.34 33.2 14x 31 

River 256 x 256 0.53 8.29 16x 7.82 

Lake 512 x 512 0.12 2.09 17x 1.16 

Table 1. Comparison of performance (shown in Frame Per 
Seconds) for different terrains: on CPU (FPS CPU); on GPU 

rendered with fixed functionality (FPS GPU); and on GPU with 
full lighting effects (FPS GPU + FX). 

In the next example we show different internal transmittance 
values for water. We used a height map consisted of two planes 
forming a slope shown in Figure 8 (a). The maximum depth is 
15.5m, and in the shallowest part the water has depth of 0.5m. 
Figure 8 (b) shows the internal transmittance of pure water and 
chlorophyll concentration of 70, by just sampling the 
transmittance graph for chlorophyll-rich green oceanic waters 
[Morel and Prieur 1977]. 

We ran a simulation of a fountain with free parts. The source of 
the water is located at the top of the fountain. Two sharp steps 
make the water break into small waterfalls. Figure 9 shows the 
results of the simulation for a maximum of 65536 particles, using 
two 256×256 textures. The simulation runs at approximately 2 
frames/seconds, with possible further optimizations to increase 
the frame rate. 

  
(a) 

  
(b) 

 Figure 8. (a) Height map for a two-plane slope; (b) light 
attenuation and internal transmittance for pure water and 

chlorophyll-rich water. 

6 Discussion 

The results of the experiments showed that there is an average 
increase of a factor of 16 in speed when running the simulation on 
the graphics hardware. The combination of the simulation data in 
the rendering pipeline and the height field representation of 
surfaces resulted in near real-time animations of water flowing on 
terrains for the smaller terrain maps. The compact representation 
of the simulation data, i.e., two RGBA textures of same resolution 
for a given terrain, makes the water column-based simulation an 
attractive option for interactive applications. 

The obvious drawback of the water column-based model is the 
vertical isotropy. External forces on the water surface are 
unconditionally applied in the vertical direction, and certain water 
phenomena cannot be represented within this model, such as 
vortices. Another drawback is that this model suffers from 
instability over large time steps, which can cause undesired 
oscillations on the water surface. 

Some visual artifacts appear on the interpolated ground texture 
due to the height map resolution and the calculation of the 
refraction in the vertex shader; see Figure 9 (b). The height map 
resolution can be used as trade-off between interactively 
previewing the animation and a final high-quality rendering. 

Without a particle model, the volume of water transferred through 
the weir flow is immediately deposited in the neighboring cell. 
This results in an unnatural rise of the column height, as discussed 
in [Holmberg and Wunsche 2004]. The particle system requires 
additional computational time, affecting the overall performance. 
The main drawback is the cost of the data transfer from the GPU 
to the CPU, since the CPU must allocate memory for the particles. 

On the rendering side, the terrain ground could have better 
lighting, including self-shadowing [Policarpo et al. 2005] and 
other underwater phenomena [Loviscach 2003; Iwasaki et al. 
2003] such as caustics. The particle rendering needs a substantial 
improvement, such as in [Takahashi et al. 2003]. 
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7 Conclusion 

We have proposed an optimization of the height-field based water 
volume model for efficient three-dimensional water flow 
simulation on terrains. We showed that the model has the 
advantage of low memory consumption. Running the simulation 
in parallel on graphics hardware also aids with realistic rendering 
of water surfaces with considerably less data transfer per frame. 
The irregular terrain ground under the water can also be 
accurately rendered without simplifications. 

The results of simulations running on the GPU of different 
terrains showed a considerable increase in speed with near 
interactive frame rates. In addition, the compact memory storage 
makes the proposed method an attractive approach for water flow 
on natural scenery for Computer Graphics animation. 
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Figure 9. Animation frames for different terrains: (a) water collapsing in a puddle 1.5m×1.5m×0.15m; (b) fractal terrain flooding 
12m×12m×2m (generated with Perlin noise); (c) river flow 50m×50m×10m; (d) lake sunset 200m×200m×50m; (e) fountain 20m×20m×5m. 


