CG による自然物、自然現象のシミュレーション

1. はじめに

自然物・現象のビジュアルシミュレーションは、フラクタルによる映像生成のブームと建設計画のための
景観シミュレーションへの実用的な応用を背景に、
1970年代後半より急速に発展してきた。しかしながら、
ならびに自然現象が確立されている自然物・現象は、
あまり少ないものも事実である。映像を提供してきたフラクタルによる山岳地形の形成法、実際の
侵食地形に似た地形を生成する方法には不十分であり、
新たなモデルの開発が期待されている。もちろん、
コスト削減を目的とすることと、高品質で映像を生成する
モデルが他のすべてを凌駕するわけではない、さまざまな手法が開発されている。一方、自然現象のうち光の
シミュレーションは、他の事例があるようよもにレンダリング技術（画像生成技術）の高品質化として
精神的に研究されている。近年の大域照明モデルの
実現によりほぼ完成の域に達したがある。また、
人間や動物の表現も映画やアニメーションへの応用を
中心として、大きな分野を形成してきている。

筆者の研究グループでは、現在以下のような研究課題を
掲げており、本稿ではその模式[1]、[2]のために
開発してきた自然物・現象のシミュレーション法につい
て紹介する。なお、紙面の都合上、他の研究機関に
よる関連する研究例などについては触れられないで
すが文献1）、[2]を参照された。

【1】景観映像生成技術の開発

山岳地形、樹木、紅葉、森林景観、炎、風、
水路、雪などの表現法

【2】伝統芸術のシミュレーション技術の開発

盆栽や陶芸の表現方法、山水画映像生成技術

千葉則茂

3. 映像と音楽の融合技術の開発

音楽映像による映像映像の生成

なお、本稿の内容はシミュレーションとはビジュアル
シミュレーションを意味し、それは“みとめられる”シ
ミュレーションであり、そのためのモデルは必ずしも
厳密な物理現象のモデルである必要はなく、それぞれ
の関連分野でよく研究されている自然現象について
も、ビジュアルシミュレーションに直接適用可能な
モデルが構築されていることは少なく、CG 研究者が
CG の立場でこれらの自然物・現象を研究する価値が
十分にある。さらに、みとめられる自然に酷似している
なら、そのモデルは自然の形成メカニズムのなんらかを
反映していることが期待できる。また、CG 一般にそう
であるが、この分野でも技術のようあらは、基本的
には高品質な映像の生成にどれほど貢献するかを判断
される。

2. 樹木の生長モデル

樹木の表現法で、魅力的なものの一つとして、樹木
の骨格が生長モデルが挙げられる。筆者らも、9 年ほど
前より、樹木の骨格形状を生成する生長モデルの開発
に取り組んでいる。筆者らは、映像合成という観点
から、樹種に固有の枝序や葉序など“幾何学的”
規則性よりも、不規則でありながらも生き生きとした
自然な枝振りや、うまく形作られた樹冠や、あるいは
老木の見えようある姿に興味をもってきた。この点にた
つと、「たとえ同じ種の木でも 2 つとして同じものは
ない」という経験的事実は、生育環境での獲得形状が
樹木の形状にとって重要であるということを示唆する
ことがわかる。

筆者らの最新版の生長モデルは以下に示すような
樹木の成長制御機能を考慮している

（a）受光量不足による枝の枯死
（b）生長枝の向き性
（c）生長枝の膨大性（変化の方向性）
（d）頂芽優性

*岩手大学工学部 地質工学科
**キーワード：コンピュータグラフィックス (computer graphics), 自然現象 (natural phenomenon), ビジュアルシミュレーション (visual simulation) 成長モデル (growth model), 行動モデル (behavioral model)
(d-1) 側生枝の生長抑制
(d-2) 休眠芽の休眠打破
(d-3) 枝の幹化

このような性質を考慮すると、基本とする分枝モデルは“幾何学的”な完全分枝でも、図1に示すような自然な視覚的形相をもって樹形が生成できるようになるという興味深い事実が得られる。

枝の数を減退させる枝の平均的な分布をもつ枝冠を形成する効果をもつ。また、事故や剪定による枝冠の部分的な欠損を補うように休眠する働きもある。これは、休眠打破や枝の幹化によりさらに加速される。機能性は、幹が十分な受光量をもつ枝の枝先をできるだけまっすぐに鉛直方向に生長させる働きがあり、生き生きとした生命感を出すのに効果的である。枝芽形成の側生枝に対する生長抑制は、幹や枝化を形成する。休眠打破や枝先の幹化、樹形の自然な複雑化に寄与し、老木の味わいある樹形の形成に効果がある。

3. 盆栽の表現

2章で示した枝の生長モデルは、光環境や剪定に反応してその生長の仕方を変える。たとえば図2に、

図1 生長樹形

何度か剪定を加えて得られた生長過程を、図3（カーブページ p.016）に、（a）の最後の樹形を用いた盆栽を示す。

生長モデルは骨格のみを生成するので、図3のような樹形を生成するためには、まず幹や枝の大きさを定義し、その幾何モデルを生成しなければならない。さらに、葉の表現、枝皮の表現、苔の表現、および鉢の表

現が必要となる。葉の表現については次章を参照されたい。図3では、枝皮や苔は簡易的な表現法によって

いる。鉢の色は、あくまで述べる植栽の発色シミュレーションで定めたものである。

一方、CG技法という観点としては、特に太い幹や枝の

枝皮面を連続で滑らかに生成することが重要となる。

筆者らは、まず筋間（枝）を円錐の一端で表現した細

胞の幾何モデルをポリゴン（立方格子）で表現し、つ

ぎに平滑化することにより滑らかな“密度分布”を発

生させ、最後にその障害的な密度分布をひとつの等

密度面（多面体）を枝皮面として生成している。

4. 葉の表現

図4（カーブページ p.016）のような広葉樹の葉の表現では、葉の向日性と乾燥による色彩変化を考慮して

いる。鉢植えの木を整列に置いておくと、葉面が太陽

光を受けやすいように葉面が間隔するのを観察すること
ができる。このようにそれぞれの葉がその向日性に従

って、光環境を好ませるように葉の姿勢を制御して

いるので、早め剪定で葉の行進を促進して葉の分布を

定めても自然な印象は得られない、もちろん、このような

性質は葉の生長過程でも考慮した方がより自然な

分布が得られると思われるが、計算量の点から現在は

以下の手順で葉の姿勢制御を行っている。

(a) 生長図1

(b) 生長図2

図2 剪定を伴う生長過程
（1）葉を膜に従って規則的に配置する。
（2）葉の受光量、最も光が到達する方向（受光ベクトルと呼ぶ）を求め、受光量が小さいときには、葉面が受光ベクトルの方に向けるように葉脈を曲げる。

図5（カラーページp.016）に紅葉のシミュレーション例を示す。紅葉（黄葉）は、葉の老齢とともに現れるものであり、原理は以下のようである。老化前は、黄色の色素であるカロチノイドをわずかに、緑色の色素であるクロロフィルを多量に含んでいるため葉は緑色をしている。老化とともにカロチノイドが分解され、カロチノイドが残るため黄色となる（黄葉）。多くの広葉樹はこの黄葉をする。また、蓄えられた糖が受光量に応じて赤の色素であるアンソニンに変化するため葉が赤くなるものもある（紅葉）。現在は、この紅葉を以下の仮定のもとにシミュレーションを行っている。
仮定1：老化は葉脈とおおまかな葉脈から"遠い"方から始まる。
仮定2：葉のそれぞれの領域の受光量に従いアンソニンが生成される。
仮定3：光飽和の小さい枝に属する葉は老化が早い。活性度は、栄養の生長モデルでのホルモン濃度で定義する。

5. 季節の森林景観の表現

落葉広葉樹林に覆われた山岳は四季折々の様相を呈し、見る者に洗い季節感を与えるものである。筆者らは、樹木の新緑・深緑・紅葉・落葉や稈雪による山岳の色彩変化を考慮した以下のような季節の森林景観のシミュレーション法を開発している。

（1）典型的な樹種とその色彩変化の系列を定める。
（2）山岳地形に応じて植生を定める。

特に落葉広葉樹はさまざまな色彩パターンの季節変化をみせるため、模の表現にはいくつかの要素が必要になる。筆者らは、「針葉樹・広葉樹、森植地（落葉・広葉樹）、開原植物（草本・開花植物、一葉開花植物、紅葉・黄葉）」という観点における代表的な樹種として8つのタイプの樹種の存在を仮定し、その色彩変化の系列を与えている。

一方、森林のような微細な表面構造をもつ物体の画像生成を行う場合、ビクセル座標での投影のサンプリングに基づく通常のレンジング法ではエイリアシングの問題が発生し、画質を低下させてしまうことがある。筆者らは、樹木のポリュームデータである"3次元ナックスチャ"を配置し、レイトレーシング法（光の顕面反射や透過・屈折も表現可能な画像生成法）に組み込んだポリュームレンジング法を施すことにより、森林景観のビジュアルシミュレーションを行っている。このような方法によって、図6（カラーページp.017）に示すような森林の微細な構造がつくる印象、たとえば冬の枯葉の群集、雪のところこもりした樹幹の印象が実現できている。

6. 種雪の近接景観

冬季の近接景観のシミュレーションでは、庭石や灯籠などに積もる雪の形が冬季の景観を特徴づける重要な要素となっている。降雪が始まってからほど時間が経過していないという積雪は、雪の下に埋もれている物体を丸くしたような形をもつが、時間が経過し降雪量が多くなるとだいに雪自体がだんだん形状を変化していく、このような形状にはさまざまなことがあるが、降雪中に形成される形状として、凍雪や樹氷などがある。筆者らは、視覚的に印象的なこれらの積雪形状を実現するために、雪片や雪渓を混ざって表す"雪粒子"と呼ぶ仮想の粒子の行動モデルを開発している。この"雪粒子"の行動モデルは以下のよう仮定に基づいている。
仮定1：雪粒子は一定の速度で落下し、風があれば流される。
仮定2：雪粒子は物体もしくは積雪表面に触れなかったときに、落下を停止する。
仮定3：落下を停止した雪粒子は、積雪の表面を重力や風力による"移動力"に従い移動し、"凍雪条件"を満たすと積雪する。
仮定4：積雪した雪粒子は一定の時間経過すると、他の雪粒子を捕まえる"付着力"をもつ。

積雪条件が満たされるとき、雪粒子に接続して付着力をもつ積雪した雪粒子が存在するか、雪粒子が（移動力が関係なし）で移動できなくなった場合、あるいは積雪の積雪表面上での移動距離が移動距離縁界に達したときをいう。

図7（カラーページp.017）は、灯籠に積もる雪のシミュレーション例である。なお、背景には図6の冬季の山岳景観画像を使用した。

7. 水 流

前出の事例紹介にもあるように、計算流体力学における物理シミュレーションでは、ナビ・ストークスの方程式として知られる流体運動の基礎方程式を数値解析的な手法により解くというアプローチがとられており。しかしながら、筆頭らは計算コストの問題や取
いやすさの観点から，相互作用を及ぼす意図的
“水粒子”の行動モデルを開発し，シミュレーション
を行っている19）．図10（カラーページ p.016）に，筆者
の行動モデルによるビジュアルシミュレーションの
例を示す．
水気の発現のために重要と思われる水の振舞いの観
点で特徴として，水の流れ，障害物や壁面の回避と
 Independence of flow，空隙へのなだれ込みと衝突・合流，
および水の静止による発生の発生を考慮し，水粒子の
速度に関して以下のような仮定をおいている．
定1：水粒子は力を受けて運動する質点であり，他の
水粒子と密度に応じた確率で衝突を起こす．
また，障害物と弾性衝突する．
定2：水粒子は一定の速度範囲をもちその範囲内
で，引力，粒子近傍での斥力，および粘性に
による力を他の水粒子から受ける．
定3：水粒子は体積をもつ．
一方，水粒子による流れのシミュレーションの結果
粒子の運動であるので，図10のような水気の発現の
ためには，粒子群から水面を定義することが必要であ
る．水面の発生法は，樹木の幹の太さを与える幾何モ
ルを発生させた方法と同様である．ただし，スクラ
間を，それぞれの粒子を中心としてガウス分布する
波分布の累積で定義する．
8. 炎・煙のシミュレーション

筆者らは，炎や煙は基本的には乱流である気流の一
の形や動きが可視化されたものと考え，シミュレー
ション法を開発している20）．この方法では，まず時間
に変化する乱流の速度場を大小さまざまな速度の
合成（これを「濃厚」と呼ぶことにする）として
生成させ，つきにこの「濃厚」に従い炎や煙の構成要
である粒子を移動させ，炎や煙の形や動きをシミュ
レーションするものである．
粒子は基本的には濃厚により作られる気流のトレック
であるが，単純なトレーサではなく，発生，移動，
粒子から粒子への移動，障害物回避に関する行動
則をもっている．移動は，濃厚場から受ける力，粒子
の動き（引力，斥力）で，この気流の力
受ける力に関する粒子の運動方程式に従い移動す
る．
また，熱の伝播モデルを設定し，延焼のシミュレーション
も可能となっている．
一方，粒子のシミュレーションから炎の映像を生成
する方法には，水粒子群から水気表面を生成するとき
用いた密度分布に似たアプローチを使用している．

ただし，水気と異なり，炎と空気の境界面は明確であ
る必要はないので，ポリュームレンダリングを用いて
いる．
また，炎は立体光源となるので，物体表面の輝度値
は炎からの入射光をモンテカルロ積分することにより
求められる．ただし，これを素朴に実行すると計算量
は膨大になるので，アニメーションを作成するため
は高速化の工夫が必要となる．図10（カラーページp.
018）にアニメーションからの数フレームを示す．
9. 陶芸のシミュレーション

陶芸のシミュレーションに関して，これまで種類の
貫入（ひび割れ）パターンの成長モデル（ひび割れ先
端の行動モデル）と釉薬の発色モデルを開発してい
る21）．
ひび割れの一般的性質22）と，陶磁器表面の釉薬にみ
られるひび割れの視覚的な特性をまとめるとき
のようである．
（a）ひび割れは他のひび割れにほどほどに交わる．
（b）ひび割れの先端は生き残っていない．
（c）ひび割れは滑らかに，互いに反発しあって走る．
(d) 軸薬の厚い部分でのびび割れは薄い部分に比べスケールが大きい。
(e) びび割れは、軸薬が比較的薄い部分を走る。
これらの軸薬のびび割れの特徴の解析に据づき、びび割れの成長モデルを開発している。図10に貫入パターンの成長シミュレーションの例を、図11(カーページ p.018)にこのような貫入パターンによる画像の例を示す。
一方、軸薬がさまざまな色彩を呈する原因としては、軸薬原料中に含まれる酸化金属、焼成法（酸化焼成、還元焼成）、焼成温度、および焼成時間などがあげられる。この中で特に重要なもの、酸化金属と焼成法である。同じ酸化金属でも焼成法の違いにより発色はまったく異なる。また、陶磁器表面の質感には、焼成により溶けずにできる厚さの異なる軸薬の層の透明感が大きく寄与するため、軸流のシミュレーションも重要である。図12(カーページ p.018)に軸流を伴う壺と皿の画像例を示す。

10. おわりに
本稿では、筆者らの研究グループで開発してきた、自然物や自然現象のビジュアルシミュレーション法について概説した。
自然景観を構成する非常に基本的なものについても、いわゆる高次実現手法が開発されていないものが多い。特に、変形地形、岩場などもその例であり、魅力的なテーマは尽きない。あまりにも突発的なフラクタル手法の出典の中で、これらのテーマへの取組みが抑制されてきた感がある。その出現から10数年たった現在、そもそも新たな試みが開始されてよい時期である。
(1995年3月20日受付)

参考文献
1) 中嶋(監訳): 最先端技術の手ほどきシリーズ—3次元CG—, オーム社(1994)
2) 千葉: 自然物・現象のCGシミュレーション, 可視化情報, 13
3) 川端, 田中, 千葉: 画像のCGに向けた基礎的検討, 情報処理学会「グラフィックスとCAD」シンポジウム論文集, 11/18 (1994)
4) 高橋(計画), 高橋(研究), 千葉: 計画による現の表現法の3次元モデルへの拡張, 計算機情報学学会, 15742/1750 (1995)
5) 井上, ほか: CSSの計算モデルとそのCGへの応用, 電子情報通信学会論文誌, J73-D II-10, 1742/1750 (1990)
6) 早田: キリンのまわし, 19/53, 中央公論社(1975)

著者紹介
千葉 茂
1951年2月7日生。84年東北大学大学院
工学研究科博士課程修了。工学博士。同年同大学助手、88年仙台電波高等専門学校教授を経て、91年同大学工学部教授。現在に至る。グラ
フのアルゴリズム、コンピュータグラ
フィックスの研究に携わる。電子情報通信学
会、情報処理学会、ACM、IEEEなどの会員。